
Abstract. This article presents an overview of recent
advances in the study of electron pairing through the use
of localization and delocalization indices obtained from
double integration over atomic basins of the exchange–
correlation density in the framework of the atoms-in-
molecules theory. These localization and delocalization
indices describe the intra- and interatomic distribution
of the electron pairs in a molecule. The main results of
the application of these second-order indices to the
analysis of molecular structure and chemical reactivity
are briefly reviewed. It is shown that localization and
delocalization indices represent a powerful tool to de-
scribe the electron-pair structure of molecules, which, in
turn, provides deeper insight into relevant chemical
phenomena such as electron correlation effects and the
formation of localized a, b electron pairs.
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1 Introduction

Modern quantum chemistry offers highly powerful and
reliable approaches to the detailed comprehension of
many intricate aspects concerning the structure and
reactivity of molecular systems. In the last 2 decades,
parallel to the fast development of newaccurate quantum-
chemical methods, there have been important advances in
the design of auxiliary methods for interpreting wave
functions. A significant number of the interpretative tools
currently available to quantum chemists are based on the
analysis of the one-electron density, q r!

� �
. Mulliken

populations [1], atoms-in-molecules (AIM) topological
analysis [2, 3, 4, 5, 6], bond orders [7, 8, 9], natural
populations [10], quantum molecular similarity

calculations [11, 12], and electron localization function
(ELF) studies [13], are, among others, commonly used
techniques for interpreting wave functions that make use
of the one-electron density. This interest in the one-
electron density for extracting chemical relevant informa-
tion is not at all surprising considering that, according to
density functional theory (DFT) [14, 15, 16, 17], the one-
electron density contains all the information about the
ground-state properties of a quantum-chemical system.

More scarce are the interpretative tools based on the
two-electron density or pair density [18, 19, 20, 21, 22,
23, 24, 25, 26, 27, 28, 29, 30], G(1,2), in spite of the fact
that this is the natural function to examine for under-
standing very relevant quantum-chemical phenomena
such as electron-correlation effects [18, 19, 20, 21, 22, 23,
24, 25, 26, 27] or the formation of localized a,b pairs [31,
32]. The two-electron density can be interpreted as the
probability of two electrons being simultaneously at
positions r1! and r2! with spins r1 and r2, respectively.
To stress that the spin of the two electrons at positions
r1! and r2! is known, we will often use the notation
Cr1r2 r1!; r2!

� �
. After spin integration of G(1,2), one gets

the spinless pair density, which can be split into an
uncorrelated pair density part and a part that gathers
all exchange and correlation effects,

C r1!; r2!
� �

¼ q r1!
� �

q r2!
� �

þ CXC r1!; r2!
� �

: ð1Þ
The uncorrelated component of the pair density,

given by the product q r1!
� �

q r2!
� �

, provides the proba-
bility of finding simultaneously two independent elec-
trons at positions r1! and r2!. The difference between
C r1!; r2!
� �

and q r1!
� �

q r2!
� �

is the exchange–correlation
density [18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 33],
CXC r1!; r2!

� �
, which is a measure of the degree to which

density is excluded at r2! because of the presence of an
electron at r1!. Therefore, CXC r1!; r2!

� �
contains all the

information necessary for the study of electron correla-
tion and electron-pair formation. Given the fact that the
one-electron density and the pair density are normalized
to N electrons and N(N)1) nondistinct electron pairs,
respectively, the double integration of the exchange–
correlation density, as defined in Eq. (1), yields )N
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electrons. By dividing C r1!; r2!
� �

by q r1!
� �

one gets the so-
called conditional pair density [18, 21, 27, 34, 35],
P r1!; r2!
� �

, which gives the probability of finding an
electron at position r2! when one electron is known to be
at reference position r1!

P r1!; r2!
� �

¼
C r1!; r2!
� �
q r1!
� � : ð2Þ

Since C r1!; r2!
� �

can be further partitioned in same-
spin and unlike-spin electron contributions,

C r1!; r2!
� �

¼ Caa r1!; r2!
� �

þ Cab r1!; r2!
� �

þ Cba r1!; r2!
� �

þ Cbb r1!; r2!
� �

; ð3Þ
it is possible to write the Prr r!1; r2!

� �
and Prr0

r1!; r2!
� �

contributions to the conditional pair density as

Prr r1!; r2!
� �

¼ qr r2!
� �

þ qrr
XC r1!; r2!
� �

;

Prr0
r1!; r2!
� �

¼ qr0
r2!
� �

þ qrr0

XC r1!; r2!
� �

:
ð4Þ

In Eq. (4), the qrr
XC r2!; r2!
� �

r ¼ a; bð Þ term is the so-
called Fermi hole [18, 19, 20, 21, 22, 23, 24, 25, 26, 27],
which is a negative quantity determining the decrease in
the probability of finding another electron with the same
spin relative to a fixed position of the electron of refer-
ence located at r1!. Its integral over r2! equals )1,
corresponding to the removal of a same-spin electron
from the r-spin density, qr r2!

� �
. It is worth remarking

that it is not the Coulomb repulsion between the elec-
trons but the effect of antisymmetrization that is the
main source of correlation between electrons of the same
spin. Coulomb repulsion also plays a meaningful role,
although the exchange correlation is by far dominant.
For electrons of unlike spin, we have only Coulomb
correlation that can be analyzed from the so-called
Coulomb hole [18, 19, 20, 21, 22, 23, 24, 25, 26, 27],
qrr0

XC r1!; r2!
� �

r; r0 ¼ a; b; r 6¼ r0ð Þ. At the Hartree–Fock
(HF) level, the motions of unlike-spin electrons are not
correlated and qrr0

XC r1!; r2!
� �

¼ 0. This term also vanishes
when the wave function is taken to be a single determi-
nant of Kohn–Sham orbitals obtained from a DFT
calculation.

2 Definition of localization and delocalization indices

An important property of the Fermi hole density is that
its on-top value (i.e., the Fermi hole density when
r1!¼ r2!) equals �qr r2!

� �
, thus ensuring the complete

removal of all like-spin electrons in the position of the
reference electron [27, 28, 29]. If this total exclusion of
same-spin density persists as r2! is displaced from r1!,
then the hole describes a region of space from which all
other same-spin electrons are excluded. In this situation,
the localization of the Fermi hole is maximized. Indeed,
the Fermi hole is known to have approximately the
shape of the localized orbital at reference positions
where most of the total density can be ascribed to one
particular localized orbital [18, 19, 20, 21, 22, 23, 24, 25].
In a closed-shell molecule, the spatial localization of a
given electron in a certain region implies the same

behavior for an electron of opposite spin, thus forming a
localized a, b pair [32] in a confined region of space.

The twomethodologies more commonly used in recent
years to partition position space are the AIM theory due
to Bader [2, 3, 4, 5, 6], and the topological analysis [13, 36,
37] of the ELF [38]. In both approaches, subsystems (ba-
sins) are defined in terms of the vector field of the gradient
of the function involved, namely the electron density or
the ELF, respectively. Other partitions, like theMulliken-
like partitioning in the Hilbert space spanned by the basis
functions, are also possible. Because of some arbitrariness
in the Mulliken-like partition and in the ELF definition
[38], in our opinion the AIM partition of space is, in
principle, themost realistic and physicallymeaningful [39,
40]. Thus, except otherwise stated, the calculations
presented in this review were performed with the AIM
partition defined by Bader [2, 3, 4, 5, 6].

In theAIM theory [2, 3, 4, 5, 6], the partition of space is
done through the atomic basins that are defined as the
regions in real space bound by zero-flux surfaces in q r!

� �
or by infinity [2, 3, 4, 5, 6]. Usually, each basin contains an
atomic nucleus, which acts as a topological attractor for
the basin; thus, each basin can be assigned to one of the
atoms in amolecule. This partitioning scheme ensures that
each atomic subsystem behaves as a proper open system
[2, 3, 4, 5, 6]. Moreover, the atomic contributions to any
molecular property can be calculated by integrating
through the atomic basins. For instance, the average
population of an atom A is defined as follows,

Nð ÞA¼ N Að Þ ¼
Z
A

q r!
� �

d r;! ð5Þ

where the subscript A indicates that the integration has
to be carried out only through the space corresponding
to the atomic basin of atom A. Summation of all the
atomic populations in a molecule yields the total number
of electrons, N.

Even though the AIM theory is mainly based on the
topological analysis of the one-electron density, the
second-order or pair density, C r1!; r2!

� �
, can also be used

in the framework of the AIM theory to shed light on
how electron pairs are distributed between the atoms in
a molecule [41, 42, 43]. Since the localization or delo-
calization of an electron is determined by the corre-
sponding localization or delocalization of its Fermi hole,
the atomic localization indices (LIs) and delocalization
indices (DIs) have been defined as [41, 43]

k Að Þ ¼ �
Z
A

CXC r1!; r2!
� �

dr1!dr2!; ð6Þ

d A;Bð Þ ¼ �
ZZ
AB

CXC r1!; r2!
� �

dr1!dr2!

�
ZZ
BA

CXC r1!; r2!
� �

dr1!dr2!

¼ �2
ZZ
AB

CXC r1!; r2!
� �

dr1!dr2!: ð7Þ
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The LIs and DIs in Eqs. (6) and (7) are obtained by
the double integration of the Fermi hole density over
the basins of atoms A or B, corresponding to every
possible position of the reference electron in the basin
of atom A, weighted by the density of the reference
electron. Because of the requirement to average by the
density of the reference electron, the exchange–corre-
lation density CXC r1!; r2!

� �
is used in the definition of

the LIs and DIs instead of the Fermi hole density. The
LIs and DIs defined in Eqs. (6) and (7) are unaffected
by a unitary transformation of the molecular orbital
set.

It is worth noting that these indices are closely related
to the fluctuation (or variance) in the average population
of the basin of a given atom A, r2, defined by [44, 45]

r2 N Að Þ½ 
 ¼ N 2
� �

A� Nh i2A; ð8Þ
where r2[N(A)] represents the quantum mechanical
uncertainty on N(A) and it is related to the LIs and
DIs through the following equations [36, 44, 45, 46]:

r2 N Að Þ½ 
 ¼ N Að Þ � k Að Þ; ð9Þ

r2 N Að Þ½ 
 ¼ 1

2

X
B 6¼A

d A;Bð Þ: ð10Þ

The LI, k(A), gives the number of electrons that are
localized in atom A. For any atom, the LI is always
smaller than or equal to the atomic population, N(A).
Actually, the ratio 100[k(A)/N(A)] is the percentage of
electron localization in atom A. It can reach 100% only
for isolated atoms. In practice, values close to 100% are
obtained for atoms that have only closed-shell interac-
tions with their neighbors. The DI, d(A,B), corresponds
to the number of electrons delocalized or shared between
atoms A and B. As indicated by Eq. (10), half of the sum
of all DIs for a given atom is the fluctuation in the av-
erage population of atom A. Because of the normaliza-
tion condition of the exchange–correlation density, the
summation of all LIs and DIs (the latter divided by 2) in
a molecule gives the total number of electrons in that
molecule, N, that is,

X
A

k Að Þ þ 1

2

X
B 6¼A

d A;Bð Þ
 !

¼ N : ð11Þ

Equations (6) and (7) are completely general, and can
be used at any level of theory, provided that the first-
and second-order density functions are known. In par-
ticular, most of the current theoretical ab initio methods
expand the molecular wave function in terms of molec-
ular orbitals (MOs). Then, for a closed-shell molecule,
k(A) and d(A,B) can be expressed as

k Að Þ ¼ �
X
i;j;k;l

DijklSij Að ÞSkl Að Þ þ N Að Þ2 ð12Þ

and

d A;Bð Þ ¼ �2
X
i;j;k;l

DijklSij Að ÞSkl Bð Þ

þ 2N Að ÞN Bð Þ; ð13Þ

respectively, where {Dijkl} are density-matrix elements
for the second-order density matrix in a MO base, and
{Sij(A)} are overlaps between MOs, integrated within
the basin of atom A.1 The four-index summations in
Eqs. (12) and (13) run over all the occupied MOs in the
molecule. These equations can also be expressed in terms
of basis functions,

k Að Þ ¼ �
X

l;t;k;r

DltkrSlt Að ÞSkr Að Þ þ N Að Þ2; ð14Þ

d A;Bð Þ ¼ �2
X

l;t;k;r

DltkrSlt Að ÞSkr Bð Þ

þ 2N Að ÞN Bð Þ; ð15Þ
where {Dltkr} are density matrix elements for the
second-order density matrix in the atomic orbital base,
and {Slt(A)} are overlaps between basis functions,
integrated within the basin of atom A.

At the HF level of theory, the pair density can be
expressed in terms of the one-electron density matrix
[47],

C r1!; r2!
� �

¼ q r1!; r1!
� �

q r1!; r2!
� �

q r2!; r1!
� �

q r2!; r2!
� �				

				: ð16Þ

Then, the expressions for the LI and DI at the HF
level can be written as [43]

k Að Þ ¼
X
i;j

Sij Að Þ

 �2

; ð17Þ

d A;Bð Þ ¼ 2
X
i;j

Sij Að ÞSij Bð Þ; ð18Þ

where the summations run over all the pairs of
occupied molecular spin orbitals of the molecule.
At the HF level, the LIs and DIs in Eqs. (17) and
(18) reduce to Wiberg indices [48] if integrations
over atomic basins are replaced by a Mulliken-like
partitioning of the corresponding integrals. Using this
approximation, Ponec and coworkers [31, 49, 50, 51,
52] have reported calculations of LIs and DIs at the
semiempirical and HF levels of theory. Moreover, at
the HF level, the definitions of bond order by Ángyán
et al. [53] and Fulton and Mixon [54, 55] are equivalent
to one another and to the DI given in Eq. (18). The
formula of the bond order established by Fulton [54]
using products of terms in the one-electron density to
describe the sharing of electronic charge between two
centers is

BAB ¼ 2
X
i;j

m1=2i m1=2j Sij Að ÞSij Bð Þ; ð19Þ

where mi is the occupation number of the ith natural spin
orbital. It can be demonstrated that Eq. (19) can be
generated from Eq. (7) using an approximation to the
exact expression for the correlated pair density, although
no reference to the second-order density was made by
Fulton in the original work [54].

1We consider here that the pair density is given by
Cð~rr1;~rr2Þ ¼

P
i;j;k;l

Dijkl/


i ~rr1ð Þ/j ~rr1ð Þ/


k ~rr2ð Þ/l ~rr2ð Þ
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In molecules having a plane of symmetry, the orbitals
can be classified as r or p, depending on their symmetric
or antisymmetric behavior with respect to reflection in
the plane. In this case, the overlap integrals Sij(A) vanish
when i and j belong to different sets and, consequently,
the contributions of r or p electrons to the LIs and DIs
can be separated. This separation, however, cannot be
generalized to any set of orbitals belonging to different
symmetry representations (e.g., A1 and B2 in C2v mole-
cules) since the partition into orbital contributions
requires that all the overlap integrals between orbitals
belonging to different sets be zero within each atomic
basin [43].

As stated for the pair density (Eq. 3), the exchange–
correlation density can also be separated into same-spin
and unlike-spin electron contributions. Consequently,
the LI and DI can also be partitioned into intraspin and
interspin components [41]:

k Að Þ ¼ kaa Að Þ þ kbb Að Þ þ kabðAÞ þ kba Að Þ; ð20Þ

d A;Bð Þ ¼ daa A;Bð Þ þ dbb A;Bð Þ
þ dab A;Bð Þ þ dba A;Bð Þ: ð21Þ

At the HF level, only the aa and bb components are
nonzero for both the LI and the DI.

Finally, it is worth noting that the definition of the DI
can be generalized to study multicenter bonding [56, 57,
58, 59]. For instance, to analyze three-center bonding it
is possible to define a DI between three centers that at
the HF level has the form

d A;B;Cð Þ ¼ 2
X
i;j;k

Sij Að ÞSjk Bð ÞSki Cð Þ: ð22Þ

Generalization of d(A,B,C) beyond the HF approxi-
mation, although possible in principle, is quite difficult,
since it would require knowledge of correlated higher-
order densities.

3 Examples and applications

This section is organized as follows. First, LIs and DIs
for a series of simple diatomic molecules with molecular
bonds of diverse degrees of ionicity and covalency are
discussed. Second, we examine the application of LIs
and DIs to two interesting polyatomic species. Third, the
hydrogen bond (HB) is investigated from the point of
view of these second-order indices. Finally, the use of
LIs and DIs to analyze the changes in electron pairing
along a chemical reaction is briefly reviewed.

3.1 Diatomic molecules

The HF/6-311++G(2d,2p) results of LIs and DIs for a
series of diatomic molecules are listed in Table 1. H2 is a
representative example of a molecule with an equally
shared pair of electrons. In this molecule, the two
electrons occupy a bonding rg MO. The D¥h symmetry
of the system imposes the restriction that the overlap
between rg MOs over each atomic basin equals 1/2, and

thus the contribution to the LI is 2 · 1/2 · 1/2 ¼ 1/2 for
each atom and the delocalization contribution is
4 · 1/2 · 1/2 ¼ 1, which completely agrees with the
prediction of the Lewis model [60] for the electronic
structure of H2. Let us now consider the Lewis structure
for the N2 molecule. According to the Lewis model [60],
the LI should have a contribution of 2 from the 1s2 core
electrons, 2 from the lone pair, and 1.5 from the three
shared pairs, giving k(N) ¼ 5.5. Moreover, these three
equally shared pairs should give a DI of 3, achieving a
total contribution of 14, the number of electrons. If we
compare these values with the ones in Table 1, we realize
that they are quite similar. The fact that d(N,N¢) > 3
means that there is a slight delocalization of the
nonbonded pair of a N atom onto the basin of the
other N atom.

For molecular bonds with equally shared pairs, such
as H2 or N2, a simple relationship between the DI and
the number of Lewis bonded pairs (bond order) is gen-
erally found. However, with the exception of equally
shared pairs, the DI cannot be identified with a bond
order [43, 61, 62]. Indeed, in molecules such as LiF,
where there is an important charge transfer, the electron
pair is not equally shared but partly localized on the
more electronegative atom, and as a consequence, k(A)
increases at expenses of d(A,B) and k(B) [43, 62, 63].
Thus, LiF presents a d(Li,F) of 0.18 and a k(F) equal to
9.85 electrons. It is important to note that the DI of LiF
does not imply a Lewis bond formed from 0.18 pairs of
electrons; instead it means that in LiF there is a bonded
pair that is very unequally shared. This can be further
illustrated with the isoelectronic sequence involving N2,
NO+, CN–, and CO, all triply bonded molecules whose
DI drops in the sequence 3.04, 2.41, 2.21, and 1.57
electrons, respectively. The DIs tend to decrease with the
increased electronegativity difference (greater charge
transfer) of the atoms involved in the bond.

Previous workers using indices that are equivalent at
the HF level to the DI defined in Eq. (7), have identified
the DI with a covalent bond order [59, 64, 65]. However,
even the use of the DI as a covalent bond order can be

Table 1. Atomic populations, N, localization indices, k, and
delocalization indices, d, for a series of diatomic molecules
computed at the Hartree–Fock (HF) level of theory with the 6-
311++G(2d,2p) basis set
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criticized for several reasons. First, electrons are delo-
calized over every pair of atoms in a molecule and not
just those linked by a bond path [40, 61, 66]. Second,
atoms linked to A or B may have an important effect on
d(A,B) values. For instance, in acetylene, the delocal-
ization of electrons from the C–C triple bond onto the H
atoms decreases d(C,C¢) from 3 to 2.86 electrons [40].
Third, one can have significant DIs even for dissociative
electronic states. For example, H2 in the doubly excited
singlet state ru

2 has a d(H,H¢) of 1 despite being a dis-
sociative state [67]. This is also a clear indication that the
DI by itself gives no indication of the energy associated
with the bonding [54]. Finally, it is worth noting that for
atoms sharing a unique electron pair in the Lewis model,
it is possible to get DIs larger than 1, a result that must
be usually attributed to the delocalization of lone-pair
electrons.

Chesnut [68, 69, 70] has recently reported that DIs
reflect the expected formal bond orders provided one
compares the ratio of molecular quantities rather than
their absolute values. Despite the relevance of these re-
sults, the use of ratios for the definition of the bond
order is somewhat arbitrary since a particular bond of a
given pair of atoms must be chosen as a reference to
calculate bond orders. In our opinion, one has to con-
sider the DI just as an index that provides a quantitative
measure of the sharing of electrons between two atoms.

It has been demonstrated by different authors that, at
the HF level, LIs and DIs usually have a small depen-
dence on the basis set, converging smoothly to their
appropriate limiting value with the extension of the basis
set, even if a Mulliken-like partition of space is used [43,
53, 56, 59]. For instance, d(N,N¢) is 3.042, 3.037, 3.040,
and 3.042 with the 6-31G, 6-31G*, 6-311G(2d), and
6-311+G(2d) basis sets, respectively [43]. In general, LIs
and DIs depend on the partition of electronic space
because they are defined by integrations over basins.
However, Chesnut and Bartolotti [71] have recently
compared the DIs obtained from the AIM partition of
space and ELF bond basin populations in some substi-
tuted cyclopentadienyl systems, reaching the conclusion
that the two measures are essentially equal for the
nonpolar C–C bond and somewhat different for bonds
that are polar and/or have lone pairs in close proximity.
As an example, the DI for the C–C double bond in the
cyclopentadienyl cation is 1.65 and the ELF bond basin
population is 1.64 electrons.

As mentioned in the Introduction, two a or b elec-
trons already avoid each other at the HF level owing to
the antisymmetry of the wave function. Since this is the
main origin of the Fermi hole, changes in LIs and DIs
owing to Coulomb correlation are predicted to be rela-
tively small [34]. The LIs and DIs computed with the
configuration interaction with singles and doubles exci-
tations (CISD) and HF(DFT) (vide infra) methods
of the same series of diatomic molecules reported in
Table 1 are collected in Table 2. From the CISD results
one can conclude that in equally shared systems (H2, N2,
and F2), Coulomb correlation causes electron density to
be removed from the vicinity of the interatomic surface
and to be concentrated in each atomic basin, with a
decrease in the number of electron pairs shared between

the two atoms and an increase in the pairing within each
atomic basin [43]. Therefore, the HF values of DIs
represent upper bounds to the number of electron pairs
shared between atoms [43, 61]. On the other hand, in
closed-shell or ionic systems (LiF), where the density is
strongly localized within the basin of each atom, the net
effect of Coulomb correlation on the pairing of electrons
within each atomic basin is minimal. In shared polar
interactions (CO, CN), and NO+), the transfer of den-
sity from the interatomic region to the atomic basins is
reduced with respect to the homonuclear molecules.
Taking the HF calculation as a reference, Coulomb
correlation causes an increase in the population of the
less electronegative atom, consistent with a reduction in
the bond ionicity. However, the decrease in the DI is
smaller than that observed in the homonuclear species. It
is important to mention that in some cases the intro-
duction of Coulomb correlation is essential to get a
correct picture of the chemical process. This is the case
of the H2 dissociation. As nuclei are pulled apart, the HF
wave function retains its DI of 1 [67], thus reflecting
through the DI the well-known deficiency of the HF
method to deal with bond dissociation. However, the
addition of correlation results in the expected value of
zero for the DI at large internuclear separations.

Several studies that report DFT calculations of LIs
and DIs [59, 68, 69, 70, 71, 72, 73, 74, 75] have been
published recently. In recent work [59, 76], the accuracy
of LIs and DIs computed from the DFT density using
the HF expressions (Eqs. 17, 18) in a scheme of calcu-
lation that we have denoted as HF(DFT) has been an-
alyzed. In general, it has been found that DIs computed
at the HF(DFT) level (with the B3LYP functional
[77, 78, 79]) are larger than those obtained with the HF
method, which in turn are greater than CISD DIs. Thus,
despite the DFT one-electron density being clearly better
than the HF one [80, 81, 82], the DFT two-electron
density calculated using the HF formalism does not
improve the HF one. This is not unexpected given the

Table 2. N, k, and d for a series of diatomic molecules at the
configuration interaction (CI) with singles and doubles excitations
and approximate density functional theory (DFT) levels of theory
using the 6-311++G(2d,2p) basis set
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fact that the DFT two-electron density calculated using
the HF formalism is formally derived from an approxi-
mate monodeterminantal wave function constructed
with Kohn–Sham orbitals that is, at least from an en-
ergetic point of view, worse than the HF wave function.

Although at the HF level the definitions of bond or-
der by Ángyán et al. [53] and Fulton and Mixon [54, 55]
are equivalent to one another and to the DI defined in
Eq. (7), differences emerge when correlated wave func-
tions are used. The CISD/6-311++G(2d,2p) indices
obtained from Eq. (15) using the exact correlated pair
density and from Eq. (19) are compared in Table 3. The
results in Table 3 show that in the two cases the DI
decreases upon going from the HF to a CI wave function
[43, 54]. One can also see that, in general, Fulton bond
orders are good approximations to the exact DIs, with
the advantage that the calculation of Fulton bond orders
does not require the use of second-order densities.
Moreover, unlike the bond order definition of Ángyán
et al. [53], the sum of Fulton’s bond indices equals N at
all levels of theory. Cioslowski and Mixon [65] have also
defined a bond order using products of overlap integrals
defined over atomic basins, but their definition is not
invariant to a unitary transformation of the MOs. Some
comparisons between the indices of Fulton and Cio-
slowski and Mixon or Ángyán et al. have been reported
[53, 55].

It is also enlightening to analyze a series of open-shell
molecules from the point of view of LIs and DIs. Un-
paired electrons have a significant effect on the inter-
atomic DIs [67]. Indeed, for many radicals, the analysis
of the spin components reveals that the interatomic
delocalization is very different for a-and b-spin electrons
[67]. An interesting working example is H2

) in its doublet
ground state. Using Eq. (18), one can easily derive that
the DI for H2

) at the ROHF level is 1.5–4[Sab(A)]
2, Sab

being the overlap integral between the rg and ru* orbitals
over an atomic basin [67]. Thus, the extra electron in H2

)

has two different effects on d(H,H¢). On one hand, an
electron in the ru* orbital, on its own, contributes 0.5 to
d(H,H¢). On the other hand, the extra electron correlates
with one same-spin electron in the rg orbital, leading
to some localization and the consequent reduction by
)4[Sab(A)]

2 to d(H,H¢). Depending on the degree of
overlap between the rg and ru* orbitals, the net effect will

be an increase or decrease in theDI, with respect toH2. At
the ROHF/STO-3G level, Sab(A) is±0.48, and d(H,H¢) is
0.59 electrons, sensibly lower than in H2. In contrast, at
theROHF/6-311++G(2d,2p) level,Sab(A) is±0.14, and
d(H,H¢) is 1.42 electrons, larger than in H2. The result in
this case is clearly basis-set dependent.

The results for O2 collected in Table 4 provide further
insight into the effect of unpaired electrons on LIs and
DIs. Each of the two oxygen atoms has 4.5 a and 3.5 b
electrons, respectively. The r contribution to the DI is
1.04, corresponding to a perfectly delocalized electron
pair plus some small contribution from electrons in
nonbonding orbitals. The two b electrons with p sym-
metry are also perfectly shared between the two atoms,
contributing exactly 1.00 to d(O,O¢). In contrast, the
interatomic delocalization of the four a electrons with p
symmetry is only 0.26 electrons in total. The orbital
occupancies [r(2)r*(2)r(2)r*(2)r(2)p(2)p(2)p*(1)p*(1)]
provide the explanation for the differences in the delo-
calization of the a and b electrons. For each of the px

and py sets, there is an a electron in a bonding orbital
and another one in an antibonding orbital, plus a b
electron in a bonding orbital. There is no overlap be-
tween spin-orbitals of different symmetry (r and p) or
between orbitals of different spin. Accordingly, each of
the b electrons in the px and py bonding orbitals does not
interact directly with other electrons and is perfectly
delocalized between the two oxygen atoms. In contrast,
the mutual repulsion between the a electrons in the
bonding and antibonding px and py orbitals leads to a
high localization of these a electrons.

3.2 Polyatomic molecules

In general, the AIM analysis becomes more complex for
polyatomic molecules because the number of interatomic
interactions grows geometrically with the number of
atoms. While electronic delocalization between distant
atoms is generally small, in some cases, the DIs between
nonbonded atoms can be significant, indicating through-
space interactions between these atoms. Furthermore,
the results obtained with the AIM theory for these
molecules are often difficult to interpret with the Lewis
model, even at the HF level of theory. In connection
with this problem, molecules with the so-called three-
center four electron (3c–4e) and three-center two elec-
tron (3c–2e) bonding interactions are interesting cases to
analyze [83]. The results for CO2 and B2H6 as examples
of 3c–4e and 3c–2e bonding are gathered in Table 5 [43,

Table 3. d obtained through Eqs. (11) and (18) for a series of
diatomic molecules with the CI with singles and doubles excitations
method using the 6-311++G(2d,2p) basis set

Table 4. The different contributions to the k and d indices of O2

in its ground state computed at the ROHF/6-311++G(2d,2p)
level
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76]. The d(C,O) value found for CO2 is close to unity,
despite the electronic structure being consistent with the
presence of four bonded Lewis pairs. Each bonding pu

orbital contributes with 0.26 electrons to d(C,O), while
the contribution from the rg and ru orbitals is
0.51 electrons. The large d(O,O¢) between nonbonded
oxygen atoms of 0.3 electrons mainly arises from the pg

orbital in CO2 (Fig. 1) [43]. It seems that a large DI
between nonbonded atoms may be a clear indication of
the existence of 3c–4e bonding. This is confirmed by
a large d(F,F¢) between nonbonded fluorine atoms in
FHF) and FFF) [83, 84]. For B2H6, it is found that
d(B,H) is larger for the terminal hydrogens than for the
bridge hydrogens. Interestingly, the electron delocaliza-
tion between the two bridge hydrogen atoms is signif-
icantly larger (0.24) than between the two boron atoms
(0.05). This small d(B,B¢) has been attributed to the low
electron density around each boron atom [43]. However,
one cannot rule out the possibility that 3c–2e bonding is
distinguished, in general, by low DIs between terminal
atoms, as opposed to 3c–4e bonding. Finally, it is worth
noting that Ponec and coworkers [56, 57, 58] have
recently characterized the three-center bonding by
means of the three-center bond index given by
Eq. (22). The authors found that this index allows easy
differentiation between 3c–2e and 3c–4e bonding, the
three-center bond index being positive for 3c–2e bonding
and negative for 3c–4e bonding.

The nonbonded DIs are of particular interest in
benzene [42, 43, 55], where the delocalization of the
density is greater between para-related carbons,
d(C,C¢) ¼ 0.10, than between meta-related atoms,
d(C,C¢) ¼ 0.07. It looks like the DIs of aromatic mole-
cules can be used as an index of aromaticity. Indeed,
Chesnut and Bartolotti [71] found a good correlation for
the DI of the formally single C–C bond in substituted
cyclopentadienyl systems and the corresponding homo-
molecular–homodesmotic resonance energy. More
research must still be undertaken to confirm the validity
of the DIs to quantify aromaticity.

The changes in the electron-pair structure of mole-
cules due to solvent effects have also been analyzed
through these second-order indices [85]. The analysis
showed that solute–solvent interactions modify the
electron-pair distribution of the solute by increasing the
polarization of the molecular bonds. This polarization is
reflected in a larger degree of charge transfer between
electronegative and electropositive atoms, an increase of
the electron localization for electronegative atoms, and a
decrease of the electron delocalization between bonded
atoms. Moreover, these effects are also more important
for charged species, especially anions, than for neutral
molecules.

Other systems that have been analyzed by means of
LIs and DIs include hypervalent molecules [73], four-
coordinated titanium complexes [75], gallium com-
pounds [40], ylides of phosphorus [86], and the 6-tricyclo
[3.2.1.02,4] octyl cation [87].

3.3 Hydrogen bond

The characterization of hydrogen bonding from the
point of view of the AIM theory has recently received
some interest. In particular, Koch and Popelier [88] have
put forward a set of topological criteria that a bond
must fulfill in order to be considered a HB. Furthermore,
Espinosa and coworkers [89, 90] have attempted a
classification of HBs using the topological and energetic
properties of intermolecular bond critical points (BCP)
derived from experimental electron densities. Also,
Fulton and Perhacs [91] have investigated the nature
of the HBs in some representative complexes by using
the index defined by Eq. (22). Fuster and Silvi [92] have
analyzed the ELF in several HB complexes and have
established topological criteria to distinguish between
weak, medium, and strong HBs. Finally, Muñoz et al.
[93] have investigated through LIs and DIs the improp-
er, blueshifting HBs.

We have carried out a preliminary study on the
relationship between the interatomic delocalization
and the interaction energy (Eint) for different kinds of
HBs with the B3LYP/6-31++G** method using the
HF(DFT) scheme to calculate DIs (vide supra). The
interaction energy of the HB complex is defined as
the energy released when the two monomers, at the
geometry that they have in the complex and separated by
an infinite distance, are brought to the position they

Table 5. N, k and d for CO2 and B2H6 at the HF and CI with
singles and doubles excitations levels of theory using the 6-31G**
basis set

Fig. 1. A schematic picture of the p orbitals in CO2
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have in the complex. d(X,H)/rX)H is plotted in Fig. 2
versus the interaction energy (d/r versus Eint) for a set of
representative hydrogen-bonded complexes, where X
and H are the atoms most involved in the intermolecular
HB. Note that the complexes are grouped into four se-
ries, according to the hydrogen-donor molecule: HF,
HCl, H2O, and H2S. Even though the number of com-
plexes in each group is very small, some interesting
trends appear in Fig. 2. For each series, the relationship
between d/r and Eint appears to be approximately linear.
d(X,H)/rX)H has been used instead of d(X,H) to allow a
direct comparison between complexes with second- and
third-row atoms in the acceptor molecule. As for the
comparison between the four series, it is worth re-
marking that the slope of the plot increases (in absolute
value) as the polarity of the donor molecule decreases
(HF > H2O > HCl > H2S). Indeed, one could con-
sider the ratio (d/r)/|Eint| as a rough measure of the
polarity of the HB. Consider, for instance, the
ClHÆÆÆNH3 complex, with an Eint of )11.3 kcal mol)1.
The delocalization between the nitrogen and hydrogen
atoms involved in the HB is relatively large (0.21), while
the charges on the nitrogen and hydrogen atoms are
)1.10 and 0.36, respectively. In contrast, the FHÆÆÆH2CO
complex, which has an Eint of )8.6 kcal mol)1, has a
lower delocalization between the hydrogen and oxygen
atoms connected through the HB (0.10), and charges of
)1.12 and 0.72 on the oxygen and hydrogen atoms, re-
spectively. Altogether, these values reveal that the HB in
FHÆÆÆH2CO is more polar that in ClHÆÆÆNH3, in agree-
ment with the values of (d/r)/|Eint| for these molecules.
A similar reasoning can be carried out for the other

complexes in Fig. 2. It is worth remarking that, for these
complexes, the relationship between the values of
qBCP(r) or its Laplacian and Eint is approximately linear,
with similar slopes for all the series. All in all, these
results suggest that the properties of the intermolecular
BCP in HB complexes are mainly related to the strength
of the HB, in agreement with the results of Espinosa and
coworkers [89, 90]. In contrast, electron delocalization
between the atoms in the HB may be rather related to
the polarity of the bond.

3.4 Chemical reactivity

Pair population and bond order analysis have been
applied to the study of electron reorganization in the
course of chemical reactions [51, 63, 94, 95, 96, 97].
As an example, we discuss the results obtained for
the Diels–Alder (DA) reaction between butadiene and
ethylene to yield hexadiene [98, 99, 100, 101, 102, 103,
104, 105, 106, 107, 108, 109, 110, 111], which is often
taken as the prototype of a pericyclic concerted reaction
(see Fig. 3 for a description of the reactants, transition
state, TS, and product involved in this reaction).

The atomic populations and LIs for all nonequivalent
atoms of the reactants, TS, and product for the con-
certed and synchronous DA reaction, calculated at the
HF level of theory, are gathered in Table 6. The DIs are
reported only for relevant nonequivalent pairs of atoms.
The d(C,H) indices have values between 0.9 and
1.0 electrons, corresponding to a rather apolar sharing
of the electrons between the carbon and hydrogen at-

Fig. 2.
d X ;Hð Þ
CX�H

versus the interaction energy of
hydrogen-bonded complexes computed at the
B3LYP/6-31++G** level of theory. The
squares are for HF as a donor, the diamonds
are for H2O as a donor, the crosses are for
HCl as a donor, and the triangles are for H2S
as a donor
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oms, and also remain nearly constant throughout the
reaction. Indeed, the most significant changes during the
DA reaction are found in the d(C,C) indices. For the
three structures, pairs of carbon atoms that are formally
single-bonded have d(C,C) values between 1.0 and
1.1 electrons, while formally double-bonded carbon at-
oms correspond to d(C,C) values between 1.8 and
1.9 electrons. For the reactants, it is worth noting that
the d(C,C) values between double-bonded atoms are
lower for butadiene (1.83) than for ethene (1.92), while
the d(C,C) values between formally single-bonded atoms
in butadiene are slightly larger than 1 (1.07), revealing,
as expected, that the C–C bonds in butadiene have in-
termediate character between a single and a typical
double bond. Moreover, the DIs between the nonb-
onded carbons in butadiene reveal that 1,4 delocaliza-
tion [d(C3,C6) ¼ 0.072] is slightly more important than
1,3 delocalization [d(C3,C6) ¼ 0.067]. The d(C,C) values
for reactants and products are consistent with the for-
mation of a new bond between the C5 and C6 atoms (and
the equivalent C4 and C3 atoms). At the same time, the
C1–C2 single bond of the butadiene molecule evolves to a
double bond in the hexadiene molecule, while the C4–C5

double bond in ethene and the C1–C6 and C2–C3 double
bonds in butadiene are transformed to formal single
bonds in hexadiene. The evolution of the C1–C2, C1–C6,
C4–C5, and C5–C6 DIs along the intrinsic reaction path
(IRP) is depicted in Fig. 4. Although the entire electron
DIs change gradually along the IRP, the largest changes
in electron-pair reorganization take place mainly in a
small region around the TS.

The TS in this reaction corresponds to a nonplanar
structure with the six carbon atoms forming a ring. This
structure is usually considered to be aromatic, and the-
oretical calculations of magnetic susceptibilities and
1H chemical shifts support this point of view [107, 108].
Indeed, according to the LIs and DIs reported in
Table 6, the TS is clearly aromatic. First of all, one must
take into account that there are three nonequivalent
carbon atoms (e.g., C1, C5, and C6); therefore, the
following pairs of nonequivalent carbon pairs exist:
four ortho pairs, three meta pairs, and two para
pairs (Fig. 3). For the ortho pairs, the associated d(C,C)
indices are about 1.4, except for d(C5,C6), and the
equivalent d(C3,C4), which are about 0.4. Therefore,
from an electronic point of view, this structure is nearly
equivalent to that of the benzene molecule, with the
difference that there is no r bonding associated with the

C3–C4 and C5–C6 pairs. Moreover, the values of
the d(C,C) indices associated to pairs of carbon atoms in
the meta position are rather small (ranging from 0.04 to
0.07), while the atoms in the para position have slightly
larger d(C,C) values (0.09 and 0.10). As already men-
tioned, the fact that there is more delocalization between
the atoms in para position than between the atoms in
meta position, in spite of the larger interatomic distance
between the atoms in para position, is characteristic of
aromatic systems. Thus, according to the d(C,C) values
just discussed, one can consider that the TS has a set of
six p electrons delocalized between the six carbon atoms,
although the nonplanar character of this structure pre-
vents it from separating strictly the electrons into r and

Fig. 3. HF/6-31G* optimized
geometries for reactants, transi-
tion state, and product for the
Diels–Alder reaction between
butadiene and ethylene. Bond
lengths are given in angstroms
and angles in degrees

Table 6. N, k, and d for the reactants, transition state, and product
of the C2H4 + C4H6 fi C6H10 Diels–Alder cycloaddition reaction,
calculated at the HF/6-31G* level of theory. o, m, and p are used to
denote pairs of atoms that are in ortho, meta, and para positions,
respectively, in the transition state
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p sets. Furthermore, the fact that different C–C distances
exist (about 1.4 Å for the r-bonded atom pairs, and
about 2.2 Å for the C3–C4 and C5–C6 pairs) leads to
slightly different delocalizations for the different ortho,
meta, and para pairs. Indeed, it is remarkable that the
main electron delocalization patterns associated with
aromaticity take place in spite of the large C3–C4 and
C5–C6 distances.

4 Conclusions

In the framework of the theory of AIM, the electron-
pair density provides important information, which has
proven to be very useful for a quantitative description
of the electron-pairing phenomena that take place
between the atoms in a molecule. An important feature
of the analysis reviewed here is that it is model-
independent, with LIs and DIs being obtained only
from first- and second-order densities, which are
physical observables. In principle, there is no need to
resort to any particular model, such as MO theory, for
these calculations. Therefore, provided that first- and
second-order densities are available, this analysis could
be performed at any level of theory. At present,
practice provides exact second-order densities only for
the HF and CISD methodologies. At the DFT level,
second-order densities based on the single determinant
of Kohn–Sham orbitals can be used even though they
are an approximation to the unknown exact DFT
second-order density.

We have shown that LIs and DIs, together with AIM
atomic populations, are very useful interpretative tools
for describing accurately the chemical bond and changes
in electron pairing that take place along the reaction
path for reactions in the gas phase and in solution. In
general, the results reviewed in here confirm that a
proper account of electron correlation is important for
the correct description of atomic interactions from the
point of view of electron LIs and DIs. The HF method
consistently overestimates the interatomic delocalization
between bonded atoms with open-shell interactions,
compared to the CI method. In contrast, qualitatively
good results are obtained at the HF level for closed-shell

or nonbonded interactions, for which the interatomic
correlation is small.

All in all, this is a very promising field that has just
provided some successful applications and that shows
itself as an interesting area of research work for the fu-
ture.
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1490

48. Wiberg KB (1968) Tetrahedron 24: 1083
49. Ponec R, Uhlik F (1997) J Mol Struct (THEOCHEM) 391:

159
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